
© 2012 triAGENS GmbH | 2012-08-26 1

Modelling data in a
schema-free world?

FrOSCon
2012-08-26

Jan Steemann (triAGENS)

© 2012 triAGENS GmbH | 2012-08-26 2

Schemas in relational databases

 Relational databases are around for a long time already

 In most relational databases we can deal with these schema
elements:

 Schema elements are auxiliary means to organise and validate the
actual data!

 tables

 columns / fields

 data types

 indexes

 relationships

 views

 triggers

 procedures / functions

© 2012 triAGENS GmbH | 2012-08-26 3

Normalisation in relational databases

 Relational databases like your data to be in a highly normalized and
de-duplicated form

 Put simple, normalisation means
 dividing big entities (tables, fields) into smaller ones

 defining relationships between them

 Example data, not normalised:

1

3

2

foo

bar

baz

user_id user_name

Power user

group_name

Rookie

Rookie

Active

Inactive

Active

status

© 2012 triAGENS GmbH | 2012-08-26 4

Normalisation in relational databases

 Example data, normalised (relationships not depicted):

 Normalisation helps to
 reduce redundancies and storage requirements

 increase consistency and integrity

 Normalised data is re-arranged on retrieval using joins, projections etc.

 Due to normalisation, data may be fetched from several tables

1

3

2

foo

bar

baz

id name

Power user

name

Inactive

1

2

2

group

1

2

1

status

1

2

id

Active

Rookie

1

2

id name

Table „users“ Table „groups“ Table „status“

© 2012 triAGENS GmbH | 2012-08-26 5

Issues with relational databases

 Issues of relational databases:
 scaling is hard:

This is due to the ACID (atomicity, consistency, isolation, durability) guarantees
they usually provide.

 rigid database schemas can obstruct rapid application development:
Initial and ongoing database schema development and evolution takes time,
but you must do it in order to have your database accept any data at all,
designing good schemas is hard

 fixed database schemas block deployment of changes:
When deploying application changes, the database schema needs to stay in sync
with the application. Deploying application changes may even cause downtime due
to long-running database migrations (e.g. ALTER TABLE statements)

© 2012 triAGENS GmbH | 2012-08-26 6

Issues with relational databases

 Some more issues:
 static schemas do not play well with dynamically typed languages:

many languages support dynamic keys for their container types, dynamic
variables, run-time typing etc. To use this with a relational database, one needs
workarounds (e.g. entity-attribute value modelling, auxilliary tables) that increase
complexity and make it slow

 saving multi-valued data is „forbidden“:
Mutli-value containers (e.g. hashes, dictionaries, lists, arrays) are used
frequently in programming but must not be saved in the database as such
Complex workarounds are necessary to handle that

 saving objects can be expensive:
saving one object in a relational way may create a lot of noise in relational
databases (though this may be obscured by frameworks)

© 2012 triAGENS GmbH | 2012-08-26 7

NoSQL databases – why?

 In the past 5 years, many new database products have emerged

 The common term for these new products is „NoSQL“ databases,
mainly interpreted as „not only SQL“

 „non-relational“ is also a good name for them because almost no
NoSQL database follows the relational model

 Instead, most NoSQL databases overcome specific issues that
relational databases have, especially
 scaling

 schema rigidity

© 2012 triAGENS GmbH | 2012-08-26 8

NoSQL databases – scaling

 Scaling problems of relational databases are addressed in most
NoSQL databases by reducing ACID guarantees and removing
relational features:
 Atomicity is guaranteed only for some operations, not all

 Isolation is only guaranteed for some operations

 Strict consistency is relaxed to eventual consistency

 Strict durability is normally turned off (but is configurable by admin)

 Don't offer referential integrity or do not enforce it

 Complex data operations as joins etc. are highly restricted or completely
disallowed

 These measures help to reduce locking and synchronisation
overhead and make scaling possible at all

© 2012 triAGENS GmbH | 2012-08-26 9

NoSQL databases – schema rigidity

 Most NoSQL databases lift the requirement of having to define
explicit database schemas:
 Some NoSQL databases don't use schemas at all, they are fully schema-free

 Some require the user to only predefine highest level schema elements
(e.g. databases, collections, column families) upfront (and some allow it as you go)

 Some use schemas implicitly by analysing incoming data, using dynamic schemas
for each data element inserted instead of predefined schemas

 Benefits:
 Less time spent on upfront schema development and ongoing schema evolution,

more time can be used for actual application development

 Can store and retrieve programming language objects more easily

 No need to sync application changes deployment with database schema changes,
no database downtime required for schema modifications

© 2012 triAGENS GmbH | 2012-08-26 10

NoSQL databases – overview

 There is a multitude of different NoSQL databases around

 http://nosql-databases.org/ currently lists 122 NoSQL databases

 Some of the most popular ones:

 They are all different, but a basic categorisation follows

 MongoDB

 CouchDB

 RavenDB

 Hadoop

 Hypertable

 Cassandra

 SimpleDB

 Riak

 Redis

 Tokyo Cabinet

 Voldemort

 Neo4j

 OrientDB

 InfiniteGraph

http://nosql-databases.org/

© 2012 triAGENS GmbH | 2012-08-26 11

NoSQL databases – categorisation

 Key-value stores:
 Map value data to unique string keys (identifiers)

 Allow access to data by key only

 Treat data as opaque (data has no schema)

 Do not save keys in predicatable order

 Sometimes disallow key enumeration
because it is expensive

 May have one or multiple key spaces to logically similar group keys

 Can implement scaling and partitioning easily due to simplistic data model

obj3

userIds

obj2

obj1

numUsers

„{ a: 1, b: 1 }“

„{ a: 2, b: 1 }“

„{ a: 1, b: 2 }“

„1, 2, 3, 4“

„25“

key value

© 2012 triAGENS GmbH | 2012-08-26 12

NoSQL databases – categorisation

 Key-value store extensions (containers, counters, expiration):
 may allow querying on value data, too, by offering secondary indexes.

secondary index values must be provided by application because store
still treats data as opaque (data has no schema)

 may offer atomic container operations, counters (e.g. inc / dec) or value
expiration features that allow broader queries and use cases

obj3

userIds

obj2

obj1

numUsers

„{ a: 1, b: 1 }“

„{ a: 2, b: 1 }“

„{ a: 1, b: 2 }“

„1, 2, 3, 4“

„25“

key value

1

1

2

index on „a“ atomic operations

increment

add 5 to set

© 2012 triAGENS GmbH | 2012-08-26 13

NoSQL databases – categorisation

 Ordered key-value stores:
 Co-locate values with adjacent keys so keys are stored sorted

 Also allow range queries on keys

 Still treat value data as opaque (data has no schema)

prj1_user1

prj2_cnt

prj1_user2

prj1_cnt

„{ a: 2, b: 1 }“

„{ a: 1, b: 2 }“

„42“

„25“

key value

prj2_user1

prj2_user2

„{ a: 5, b: 1 }“

„{ a: 1, b: 3 }“

© 2012 triAGENS GmbH | 2012-08-26 14

NoSQL databases – categorisation

 Wide column stores:
 Save values in an n-level map-of-maps substructure,

e.g. column families, supercolumns and columns with value & timestamp

 Allow querying specific attributes for keys (at least at the top levels)

user2

user3

user1 name: „foo“

key columns

city: „bar“

name: „bar“ work: „foo“city: „baz“

name: „baz“

user1 address

key supercolumns

city: „bar“ street: „foo“

name first: „foo“ last: „bar“

columns

© 2012 triAGENS GmbH | 2012-08-26 15

NoSQL databases – categorisation

 Document stores:
 Normally based on key-value stores (each document still has a unique key)

 Allow to save documents with logical similarity in „databases“ or „collections“

 Treat data records as attribute-structured documents (data is no more opaque)

 Use inherent schemas of documents to categorise attributes and sub-attributes

 Introduce data types (primitive types, compound types)

 Allow arbitrary nesting and document complexity using lists, arrays etc.

 Allow individual documents to have different attributes, even if in same collection

 Often allow querying and indexing document attributes

© 2012 triAGENS GmbH | 2012-08-26 16

NoSQL databases – categorisation

 Example documents in a document store:

user1 address

key

city: „bar“ street: „foo“

name: „foo“

birthday day: 1month: 12

likes „skiing“ „fishing“

year: 1983

attributes and sub-attributes

avgScore: 3.5

user2 address city: „baz“ street: „foobar“

name: „bar“

user42 banana: true

© 2012 triAGENS GmbH | 2012-08-26 17

NoSQL databases – categorisation

 Graph databases:
 Often based on key-value or document stores

 Additionally save relationships (edges) between documents (vertices)

 Allow querying relationships between documents

 Relationships can have attributes as well

user1 name: „foo“

age: 32

rated

user2 name: „bar“

age: 35

name: „foo“

value: 3

rated value: 5

© 2012 triAGENS GmbH | 2012-08-26 18

Caveat emptor

 Things you should be aware of when using a NoSQL database:
 multi-query, multi-document or multi-key „transactions“ may not be atomic

and not be isolated

 the application may need to handle inconsistent / stale reads

 the application may need to resolve version conflicts or handle multiple schema
versions of documents

 referential integrity needs to be enforced by the application

 if the datastore treats data as opaque, it will not at all validate it

 by design, the database may not be able to answer some classes of queries,
e.g. joins need to be performed by the application, not by the database

 Put simple: database will do less, application must do more!

© 2012 triAGENS GmbH | 2012-08-26 19

Which datastore to use?

 Relational databases are still a good fit for many problems,
but not for all

 The same is true for NoSQL databases

 Each category of NoSQL databases and each individual product
has its own sweet spots (and downsides)

 Check what you want to achieve first, then pick the right tool(s)
for the job

 It may make sense to use different databases in parallel

© 2012 triAGENS GmbH | 2012-08-26 20

Why care about data modelling in NoSQL?

 Even in NoSQL databases, your data will have some structure

 This effective data model determines
 the consistency level you're able to achieve

 the retrieval and update performance

 the storage space required for saving the data

 the types of queries you will be able to run on the data

 So even if you don't define explicit schemas, you still need to care
about structuring your data properly

© 2012 triAGENS GmbH | 2012-08-26 21

Some NoSQL data modelling considerations

 Data modelling for schema-less or dynamic schema datastores
is different than modelling for relational databases

 Different NoSQL databases require different modelling

 The techniques to apply are not revolutionary, but in the relational
world they are unnecessary or even anti-patterns

 A few things to look at:
 Proper key and attribute naming

 Building „indexes“ by hand for aggregation

 Data denormalisation and duplication

© 2012 triAGENS GmbH | 2012-08-26 22

 In plain key-value stores, keys are the only thing that you can query

 Keys are also present in other categories of NoSQL databases.
Data elements are still identified using unique keys

 Keys should be picked so that they are sensible and legible

 Keys are normally stored just once, but...

 ...in some NoSQL databases, key values may be duplicated a lot of
times in secondary indexes, append-only log structures etc.

 In these situations, keys should also be as short as can be tolerated
to not waste disk space / RAM

Picking „good“ keys – key length

© 2012 triAGENS GmbH | 2012-08-26 23

Key length – CouchDB example

 Case: insert 1000 documents with unique keys into vanilla CouchDB

 Key prefix is „very-long-id“

 For each document, we also store an attribute named „very-long-value“

 Setup:
for i in `seq 1000 1999`
 do
 curl ­X POST \
 ­­header "Content­Type: application/json" \
 ­­data "{ \"_id\": \"very­long­id­$i\", \
 \"very­long­value\": \"$i\" }" \
 http://127.0.0.1:5984/keytest
 done

© 2012 triAGENS GmbH | 2012-08-26 24

Key length – CouchDB example

 Now check how often the key prefix occurs in the datafile:
strings /db/keytest.couch | grep ­c "very­long­id"
strings /db/keytest.couch | grep ­c "very­long­value"

 Results:
 the non-key attribute name „very-long-value“ is saved 1,000 times

 the key prefix is stored 42,492 times instead of the expected 1,000 times !!

 This is due to MVCC that organises data in copy-on-write B+ trees

© 2012 triAGENS GmbH | 2012-08-26 25

 If in a key-value store only one global keyspace is available, use
„hierarchical keys“ to distinguish keys from multiple applications or
multiple users. This helps preventing unintended key collisions.

 If your datastore allows efficient key enumeration with prefixes,
this also allows hierarchical operations by prefix, e.g.
DELETE client6_*, GET app1_client6_item*

 Don't need this in document stores due to collections

Picking „good“ keys – hierarchical keys

Avoid these keys:

 user1

 profile42

 item23

Instead, use such keys:

 app1_user1

 client6_profile42

 app1_client6_item23

© 2012 triAGENS GmbH | 2012-08-26 26

Attribute names in value data

 The value data you save is often a combination of attribute names and values, e.g.
{ „age“: 35, „gender“: „m“, „name“: „foo“ }

 In a fully schema-free datastore (e.g. plain key-value store), the store treats data as
opaque and cannot tell attribute names and values in the value data apart

 In document stores, data is no more opaque. However, there are no fixed schemas.
Each document, even if in the same collection, could have different attributes

 This means non-key attribute names are saved redundantly for EACH record/document

 Result: using attribute name „f“ will normally result in much lower disk footprint than
using attribute name „firstName“.

 Check these MongoDB-specific links:
 http://christophermaier.name/blog/2011/05/22/MongoDB-key-names

 https://jira.mongodb.org/browse/SERVER-863

http://christophermaier.name/blog/2011/05/22/MongoDB-key-names

© 2012 triAGENS GmbH | 2012-08-26 27

 NoSQL stores normally don't support aggregation queries, but you
can workaround that by creating „index“ keys on your own.
Initial data:

 From that you can derive „index“ keys that provide users by state.
You can now run count queries easily:

Aggregation – home-made indexes

user1 „{ state: „CA“, age: 35 }“

key value

user2user2 „{ state: „CA“, age: 26 }“

user3 „{ state: „FL“, age: 21 }“

user42 „{ state: „FL“, age: 39 }“

users_CA „user1, user2“

users_FL „user3, user42“

© 2012 triAGENS GmbH | 2012-08-26 28

 „Index“ keys that provides users by age:

 Can also directly aggregate categories in „index“ keys if there are
(too) many distinct category values:

(I know, I should have used better key names)

Aggregation – home-made indexes

key value

users_39 „user42“

users_35 „user1“

users_21 „user3“

users_26 „user2“

users_20_29 „user3, user2“

users_30_39 „user1, user42“

© 2012 triAGENS GmbH | 2012-08-26 29

 Home-made „indexes“ provide about the same functionality as
materialised views do in relational databases

 And as in materialised views, this means data duplication!

 The database won't maintain the „indexes“ for you, so you have to
maintain them yourself (from out of the application)

 Keeping the „indexes“ up-to-date may require data updates
in several places

 Can easily get ouf of sync or provide an inconsistent view of the data

 Accuracy may still be good enough, but this depends on the use case

Aggregation – home-made indexes

© 2012 triAGENS GmbH | 2012-08-26 30

 If your datastore allows efficient key range enumeration using leftmost
prefix queries, using hierarchical „index“ keys can also be used for
multi-dimensional aggregation

Aggregation – hierarchical keys

Europe_DE_Berlin

key

Europe_DE_Cologne

Europe_FR_Paris

Europe_FR_Toulose

Asia_TW_Taipeh

Asia_CN_Beijing

Americas_US_New York

Americas_CA_Toronto

Query: GET Asia_*

Query: GET Europe_*

Query: GET Europe_FR_*

key query

© 2012 triAGENS GmbH | 2012-08-26 31

 If the datastore does not allow querying attribute values, buckets
with predictable key names can be used to support aggegation

 Example case: users online on a website during the last x minutes

 Key name convention: „usersOnline_${slot}“, with ${slot} being
slot = (time() / 60).floor() * 60
(the current Unix timestamp rounded to a 60 second slot)

 This will produce predictable key names such as
 usersOnline_1345732920

 usersOnline_1345732980

 UsersOnline_1345733040

 You can now easily save and query which users were online in
which time slot and create reports

Aggregation – key buckets

© 2012 triAGENS GmbH | 2012-08-26 32

 It may be beneficial to all nest sub elements of a logical unit in the
unit itself instead of saving the sub elements separately

 Document stores are built for exactly this case (nesting attributes),
but this pattern can be used in key-value stores as well

 Instead of saving all sub elements individually

Can store all sub elements of a user in one key / document only:

Denormalisation – nesting sub elements

user1 { name: ..., address: ..., likes: }

key value

user1_name

user1_address

...

...

user1_likes ...

© 2012 triAGENS GmbH | 2012-08-26 33

 Benefit: nesting sub elements reduces the number of elements that
keep data for a logical unit (here: „user“)

 This reduces the number of read / write operations for each unit

 Accessing data of a single key is normally an atomic operation, so
nesting prevents sub elements from getting out sync, avoiding
inconsistent reads and writes of logical units

 In NoSQL databases, nesting is also a natural way to avoid joins,
which are not offered by most NoSQL products

Denormalisation – nesting sub elements

© 2012 triAGENS GmbH | 2012-08-26 34

 Downside: nesting will increase the data volume stored for each key,
increasing the overhead for each read and write in both the datastore
and the application

 If you overdo nesting, you might end up having the same data stored
in multiple places, and no clear responsibility for it

 This will waste space and cause consistency issues

 For example, a change to user2's „likes“ attribute requires 3 writes:

Denormalisation – nesting sub elements

key value

user2 { likes: [...], friends: [{ user67: { likes: [...] } }, user1: { likes: [...] } }, ...] }

user15 { likes: [...], friends: [{ user2: { likes: [...] } }, user99: { likes: [...] } }, ...] }

user1 { likes: [...], friends: [{ user2: { likes: [...] } }, user15: { likes: [...] } }, ...] }

© 2012 triAGENS GmbH | 2012-08-26 35

 Instead of nesting such elements fully, prefer referencing them by
key / id:

 This will allow you to update data in only one place,
saving storage space and improving consistency

 The price you pay: to retrieve all details for the referenced items, you
now need additional read operations

Denormalisation – nesting sub elements

key value

user2 { likes: [...], friends: [user67, user1] }

user15 { likes: [...], friends: [user2, user99] }

user1 { likes: [...], friends: [user2, user15] }

© 2012 triAGENS GmbH | 2012-08-26 36

 Data modelling for NoSQL databases is different than for relational databases:

 Instead of normalising your schema, you'd rather denormalise your data

 Data duplication is common to support analysis and aggregation queries, and for fast retrieval

 Different NoSQL databases have different features and to be used effectively,
may require different data models

 To make best use of a specific store, you should have some knowledge about how it
organises data internally and what guarantees it provides:

 Atomic operations should be exploited where possible to improve consistency

 Cross-record/document consistency is mostly not guaranteed.
If your store at all offers it, it will be slowed down by it

 In general, logic is moved from the database to the application

 Application needs to handle inconsistencies, version conflicts etc.

 Your application has more control over the data, but it has to use this power

Summary

© 2012 triAGENS GmbH | 2012-08-26 37

Misc

 NoSQL user group Cologne:
every 1st Wednesday / month
http://www.nosql-cologne.org/

 NoSQL matters conference Barcelona:
October 6th, 2012
http://www.nosql-matters.org/

 ArangoDB 1.0 release:
September 2012
http://www.arangodb.org/

http://www.nosql-cologne.org/
http://www.nosql-matters.org/
http://www.arangodb.org/

	Titel
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37

